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Abstract—Mechanical search is a robotic problem where a
robot needs to retrieve a target item that is partially or fully-
occluded from its camera. State-of-the-art approaches for me-
chanical search either require an expensive search process to
find the target item, or they require the item to be tagged with
a radio frequency identification tag (e.g., RFID), making their
approach beneficial only to tagged items in the environment.

We present FuseBot, the first robotic system for RF-Visual
mechanical search that enables efficient retrieval of both RF-
tagged and untagged items in a pile. Rather than requiring
all target items in a pile to be RF-tagged, FuseBot leverages
the mere existence of an RF-tagged item in the pile to benefit
both tagged and untagged items. Our design introduces two key
innovations. The first is RF-Visual Mapping, a technique that
identifies and locates RF-tagged items in a pile and uses this
information to construct an RF-Visual occupancy distribution
map. The second is RF-Visual Extraction, a policy formulated as
an optimization problem that minimizes the number of actions
required to extract the target object by accounting for the
probabilistic occupancy distribution, the expected grasp quality,
and the expected information gain from future actions.

We built a real-time end-to-end prototype of our system on
a UR5e robotic arm with in-hand vision and RF perception
modules. We conducted over 180 real-world experimental trials
to evaluate FuseBot and compare its performance to a state-of-
the-art vision-based system named X-Ray [10]. Our experimental
results demonstrate that FuseBot outperforms X-Ray’s efficiency
by more than 40% in terms of the number of actions required
for successful mechanical search. Furthermore, in comparison to
X-Ray’s success rate of 84%, FuseBot achieves a success rate
of 95% in retrieving untagged items, demonstrating for the first
time that the benefits of RF perception extend beyond tagged
objects in the mechanical search problem.

I. INTRODUCTION

There has been increasing interest in robotic systems that

can find and retrieve occluded items in unstructured en-

vironments such as warehouses, retail stores, homes, and

manufacturing [8, 10, 5, 16, 6]. For example, in e-commerce

warehouses, there is a need for robots that can package cus-

tomer orders from unsorted inventory or process returns from a

miscellaneous pile. Similarly, in manufacturing plants, robots

need to find and retrieve specific tools from the environment

(e.g., a wrench) that they need for assembly tasks. In many

of these scenarios, the target item may be partially or fully

occluded from the robot’s camera, requiring the robot to

actively explore the entire environment to find and retrieve

the desired item.

Existing robotic systems that aim to address this mechanical

search problem broadly fall in two main categories. The first

relies entirely on vision-based perception [8, 10, 16]. In these

systems, the robot typically performs active perception by

Fig. 1: RF-Visual Mechanical Search. FuseBot uses RF and visual sensor
data (from wrist-mounted camera and antenna) to perform mechanical search
and extract the occluded target items from the piles of both RFID tagged and
non-tagged items.

moving its camera around a pile to identify the target item

through partial occlusions, and/or it performs manipulation

to declutter the scene by removing occluding items until it

can observe the target. While this category of systems can

perform well on relatively small piles, they become ineffi-

cient in complex scenarios with larger or multiple piles. The

second category of systems leverages radio frequency (RF)

perception in addition to vision-based perception [5, 6, 33].

Unlike visible light and infrared, RF signals can go through

standard materials like cardboard, wood, and plastic. Thus,

recent systems have leveraged RF signals to locate fully

occluded objects tagged with widely-deployed, passive, 3-cent

RF stickers (called RFIDs). By identifying and locating the

RFID-tagged target items through occlusions, these systems

can make the mechanical search process much more efficient.

However, the benefits of existing systems in this category are

restricted to scenarios where all target items are tagged, thus

providing limited benefit in more common scenarios where

only a subset of items are tagged with RFIDs.

In this paper, we ask the following question: Can we design

a robotic system that performs efficient RF-Visual mechanical

search for both RF-tagged and non-tagged target objects?

Specifically, rather than requiring all items to be RF-tagged,

we consider more realistic and practical scenarios where

only a subset of items are tagged, and ask whether one can

improve the efficiency of retrieving non-tagged target items by



Fig. 2: RF-Visual Mapping and RF-Visual Extraction. (a) As FuseBot moves, it observes the environment using the wrist mounted camera and RF
module. (b) Using the RF measurements, FuseBot localizes the RFID tagged items in the environment and computes RF kernels. (c) Using the wrist mounted
camera, FuseBot observes the environment. (d) FuseBot fuses the vision observations and the RF kernels to create a 3D occupancy distribution map which
is visualized as a heat map. (e) FuseBot performs instance segmentation of the objects in the environment using the depth information from the camera. (f)
FuseBot optimized its extraction strategy by integrating the 3D occupancy distribution over each of the object segments and efficiently retrieves the target.

leveraging RF perception. A positive answer to this question

would extend the benefits of RF perception to new application

scenarios, such as those where the target item cannot be tagged

with inexpensive RFIDs (e.g., metal tools and liquid bottles)1

and instances when the robot is presented with piles of items

that are not fully tagged.

We present FuseBot, a robotic system that can efficiently

find and extract tagged and non-tagged items in line-of-sight,

non-line-of-sight, and fully occluded settings. Similar to past

work that leverages RF perception, FuseBot uses RF signals

to identify and locate RFID tags in the environment with

centimeter-scale precision. Unlike the past systems, it can

efficiently extract both non-tagged and tagged items that are

fully occluded. As shown in Figure 1, FuseBot integrates a

camera and an antenna into its robotic arm and leverages the

robot movements to locate RFIDs, model unknown/occluded

regions in the environment, and efficiently extract target items

from under a pile independent of whether or not they are

tagged with RFIDs.

The key intuition underlying FuseBot’s operation is that

knowing where an RFID-tagged item is within a pile provides

useful information about the pile’s occupancy distribution and

allows the robot to significantly narrow down the candidate

locations of non-tagged items. In its simplest form, knowledge

of where an RFID-tagged item is within a pile negates the

possibility of another item occupying the same location. Since

the in-hand antenna allows the robot to localize all RFID tags

in a pile, the robot can leverage this knowledge to narrow down

the likely locations of a non-tagged target item, and thus plan

efficient retrieval policies for these items.

1It is worth noting certain RFIDs can work on metal and liquids, but are
much more expensive than the 3-cent passive RFIDs, making prohibitive for
widespread adoption.

Translating this high-level idea into a practical system is

challenging. While the in-hand antenna can locate each RFID

as a single point in 3D space, it cannot recover the 3D volumet-

ric occupancy map of the object an RFID is attached to. Since

an RFID is attached to the object’s surface and not at its center,

there is uncertainty about both the position and orientation of

the tagged item. The problem is further complicated by the

fact that retrieving an occluded item involves manipulating the

environment (e.g., by removing occluding objects to uncover

the target). Here, uncertainty about the target object’s location

makes it difficult to identify the optimal manipulation actions

to most efficiently reveal and extract the target.

FuseBot introduces two key components that together allow

it to overcome the above challenges:

(a) RF-Visual Mapping: FuseBot’s first component constructs

a probabilistic occupancy map of the target item’s location

in the pile by fusing information from the robot’s in-hand

camera and RF antenna as shown in Fig. 2(a). This component

localizes the RFIDs in the pile and applies a conditional

(shape-aware) RF kernel to construct a negative 3D probability

mask, as shown in the red regions of Fig. 2(b). By combining

this information with its visual observation of the 3D pile

geometry (shown Fig. 2(c)), as well as prior knowledge of

the target object’s geometry, FuseBot creates a 3D occupancy

distribution, shown as a heatmap in Fig. 2(d), where red

indicates high probability and blue indicates low probability

for the target item’s location. In this example, it is worth noting

how the probability of the occluded target item is lower near

the locations of RFID-tagged objects. Section IV describes this

component in detail, and how it also leverages the geometry

of the tagged items and the pile.

(b) RF-Visual Extraction Policy: After computing the 3D

occupancy distribution, FuseBot needs an efficient extraction



policy to retrieve the target item. Extraction is a multi-step

process that involves removing occluding items and iteratively

updating the occupancy distribution map. To optimize this

process, we formulate extraction as a minimization problem

over the expected number of actions that takes into account

the expected information gain, the expected grasp success, and

the probability distribution map. To efficiently solve this prob-

lem, FuseBot performs depth-based instance segmentation, as

shown in Fig. 2(e). The segmentation allows it to integrate the

3D occupancy distribution over each of the object segments,

and identify the optimal next-best-grasp, as we describe in

detail in section V.

We implemented a real-time end-to-end prototype of

FuseBot with a Universal Robot UR5e [31] and Robotiq 2f-

85 gripper [29]. As shown in Figure 1, we mount an Intel

RealSense Depth camera D415 [19] and log-periodic antennas

on the wrist of the robotic arm. Our implementation localizes

the RFIDs by processing measurement obtained from the log-

periodic antennas using BladeRF software radios [27].

We ran over 180 real-world experimental trials to evaluate

FuseBot. We compared our system to a state-of-the-art system

called X-Ray [10], which computes a 2D occupancy distribu-

tion based on an RGB-D image. Our evaluation demonstrates

the following:

• FuseBot can efficiently retrieve complex, non-tagged

items in line-of-sight and fully occluded settings, across

different target objects and number of RFID tags. It

succeeds in 95% of trials across a variety of scenarios,

while X-Ray was able to extract the target item in 84%

of the scenarios.

• In scenarios where FuseBot and X-Ray succeed in me-

chanical search, FuseBot improves the efficiency of ex-

traction by more than 40%. Specifically, it reduces the

number of actions needed for successful retrieval from 5

to 3 actions in the median, and from 11 to 6 in the 90th

percentile.

• Our results also demonstrate that the efficiency gains from

FuseBot’s RF-Visual mechanical search increase with the

number of tagged items in the environment, reaching as

much as 2.5× improvement over X-Ray in environments

where 25% of (non-target) items are RF-tagged and 4×
improvement when the target item is tagged.

Contributions: FuseBot is the first system that enables me-

chanical search and extraction of both non-tagged and tagged

RFID items in non-line-of-sight and fully-occluded settings.

The system introduces two new primitives, RF-Visual Mapping

and RF-Visual Extraction, to enable RF-Visual scene under-

standing and efficient retrieval of target items. The paper also

contributes a real-time end-to-end prototype implementation

of FuseBot, and an evaluation that demonstrates the system’s

practicality, efficiency, and success rate in challenging real-

world environments.

II. RELATED WORK

Interest in the problem of mechanical search dates back

to research that recognizes objects through or around partial

occlusions via active and interactive perception. Researchers

explored the use of perceptual completion to identify partially

occluded objects [17, 28], and developed systems that perform

active perception whereby a robot moves a camera around

the environment in order to search for items that are partially

visible [2, 3, 4]. Other areas of research focused on efficiently

grasping partially occluded objects using physics-based plan-

ners [13]. While these works made significant progress on the

task of finding and retrieving partially occluded objects, they

do not extend to mechanical search scenarios where the target

object is fully occluded.

Over the past few years, there has been rising interest in

the mechanical search problem for fully occluded objects,

whereby the robot actively manipulates the environment to

uncover target objects. The majority of systems for mechan-

ical search rely entirely on vision, and employ heuristics or

knowledge of the pile structure in order to inform the search

process. For example, recognizing that mechanical search is a

multi-step retrieval process, pioneering research in this space

used a heuristic-based approach to remove larger items in

the environment to uncover the largest area and maximize

information gain at each step [8]. More recent work has started

looking at the structure of the pile and constrains the potential

target item locations by leveraging the geometry of both the

pile and the target object [10]. Other work has also looked at

lateral search, where objects are retrieved from the side rather

than from a pile [16, 1]. One of the main challenges of this

vision-based approach to mechanical search is that as piles be-

come larger and more complex, the uncertainty grows and the

systems become more inefficient. FuseBot builds on this type

of research to perform efficient mechanical search of fully-

occluded objects, and outperforms state-of-the-art past vision-

based systems (as we demonstrate empirically in section VII)

especially in the presence of any RFID tagged item.

Most recently, researchers have explored the use of RF

perception to address the mechanical search problem [5, 6, 33].

This research was motivated by recent advances in RF local-

ization, which has enabled locating cheap, passive, widely-

deployed RF-tags (called RFIDs tags) with centimeter scale

accuracy, even through occlusions [24, 32, 23]. Thus, by

tagging the target object with an RFID, researchers have

demonstrated the potential to perform efficient mechanical

search by directly locating the target RFID-tagged item in

a pile, bypassing the exhaustive search altogether. However,

these past systems require the target item to be tagged with an

RFID to enable efficient mechanical search and retrieval. Our

work is motivated by this line of work, and is the first to bring

the benefits of RF perception to non-tagged target items, lever-

aging the mere existence of RFID tagged items in the pile.

III. SYSTEM OVERVIEW

We consider a general mechanical search problem where a

robot is tasked with retrieving a target item from a pile. The

target item may be unoccluded, partially occluded, or fully

occluded from the robot’s camera.



We focus on scenarios where one or more items in the pile

are tagged with UHF RFID (Radio Frequency IDentification)

tags, but where the target item does not need to be tagged

with an RFID. We assume that the robot knows the shape of

the tagged item, and has a database with the shapes of all

RFID-tagged items. Such a database may be provided by the

item’s manufacturer. The robot is a 6-DOF manipulator with a

camera and an antenna mounted on its wrist, and we assume

that the target item is kinematically reachable from the robotic

arm on a fixed base.

FuseBot’s objective is to extract the target(s) from the

environment using the smallest number of actions. It starts

by using its wrist-mounted antenna to wirelessly identify and

locate all RFIDs in the pile, even if they are in non-line-of-

sight. Using the RFID locations and its visual observation of

the pile geometry, it performs RF-Visual mechanical search in

two key steps. The first is RF-Visual Pile Mapping, where

FuseBot creates a 3D probability distribution of the target

object’s location within the pile. The second is RF-Visual

Extraction, where the robot uses the probability distribution

and its scene understanding to perform the next-best grasp.

The next two sections describe these steps in detail.

IV. RF-VISUAL PILE MAPPING

In this section, we explain how FuseBot creates a 3D

occupancy distribution of a target item’s location in a pile.

The process of RF-Visual mapping consists of four key steps

where the robot first constructs separate RF and visual maps,

then fuses them together, and finally folds in information about

the target object’s geometry. For clarity of exposition, we

focus our discussion on scenarios where the target item is

both occluded and non-tagged, and discuss at the end of the

section how this technique generalizes to unoccluded and/or

non-tagged items.

A. Visual Uncertainty Map

The first step of RF-Visual pile mapping involves construct-

ing a 3D visual uncertainty map of the environment. This map

is important to identify all candidate locations of an occluded

object. To create the visual uncertainty map, the robot moves

its downward pointing wrist-mounted camera above the pile

to cover the workspace. It follows a simple square-based

trajectory in a plane parallel to the table with a pile, similar

to past work that constructs point clouds of piles [6].

FuseBot combines the visual information obtained during

its trajectory using an Octomap structure [15]. The structure

represents the 3D workspace as a voxel grid.2 Using depth

information and the position of the camera, FuseBot can

determine whether each voxel in the environment is visible

to the camera (the surface of the pile and table), or free space

(the air), or occluded (e.g., under the pile or table). Formally,

it creates a 3D uncertainty matrix C(x, y, z) as follows:

C(x, y, z) =

{

1 unobserved voxel

0 observed voxel

2In our implementation, each voxel is a 2.5× 2.5× 2.5cm cubic volume.

Here, the higher value (i.e., 1) represents more uncertainty. It

is worth noting that, in this representation, both unexplored

and occluded regions are considered uncertain.

As an example, consider the sample scenario shown in

Fig. 1. This scenario consists of two piles with three RFID-

tagged items, and where the target item is a toy (stuffed red

turtle shown in the top center) hidden under the pile. The

visual uncertainty map is depicted as a heatmap in Fig. 3(a).

Here, we can see that the regions under the surface of the piles

have a high probability (red) of containing the target object.

B. RF Certainty Map

So far, we have explained how FuseBot constructs a 3D

uncertainty map based on the camera’s depth information.

Next, we explain how it constructs a certainty map based on

RF measurements.

Recall that FuseBot has a wrist-mounted antenna which it

uses to perform RF perception. The antenna is used to read and

localize RFID tags in the pile. We explain this process at a high

level and refer the reader to prior work on RFID localization

for more detail[24, 23, 6, 5]. When the antenna transmits radio

frequency signals, passive RFID tags harvest energy from this

signal to power up and respond with their own identifier.

FuseBot leverages each tag’s response to compute the distance

to the tag. As the robot moves above the pile to collect different

depth measurements (as discussed in section IV-A), it can

simultaneously collect distance measurements from each of

the tags, then combine these measurements via trilateration to

localize each of the RFIDs in the pile.

FuseBot leverages the RFID tag locations to identify regions

in the pile that the target item is less likely to occupy, since

they are occupied by the RFID-tagged items (rather than the

non-tagged target item). A key challenge here is that the

system can only recover the RFID tag’s location as a single

point in 3D space. Since an RFID is attached to the surface

of the tagged item, there remains nontrivial uncertainty about

the orientation and exact position of the item in the pile (as

it may occupy a non-trivial region in the near vicinity of the

localized tag).

RF Kernel: FuseBot encodes the uncertainty about the RFID-

tagged object’s location by constructing a 3D RF kernel that

leverages the known dimensions of the tagged object. The RF

kernel is modeled as a 3D Gaussian, centered at the RFID tag,

and masked with a sphere whose radius is equal to the longest

dimension of the tagged item. The spherical mask represents

an upper bound on the furthest distance from the tag that

the object can occupy. Formally, we represent its RF kernel

through the following equation:

m(p, pRFID) =

{

− e||p−pRFID||2/ds
√
πds

||p− pRFID||
2 ≤ dl

0 ||p− pRFID||
2 > dl

where p is the point where we are evaluating the kernel,

pRFID is the location of the RFID, ds and dl are the shortest

and longest distance of the RFID tagged object’s bounding box
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Fig. 3: RF-Visual Mapping. FuseBot a) constructs an initial map of unknown regions using visual RGB-D information and b) uses RFID tag locations to
construct RF kernels. c) It then combines the RF and Visual information to more accurately map probable target locations. d) Finally, it uses the target object
geometry to further refine the probable target locations.

respectively, and ||·||2 represents the L2 norm. Here, it is worth

noting that the negative sign represents the negative likelihood

for the target item to occupy the corresponding region.

In the presence of multiple RFID tagged items, the RF

certainty map is a linear combination of all RF kernels

R(x, y, z) = −

N
∑

i=0

m(p, pi)

where N is the number of RFID tagged items in the

environment. pi is the ith RFID location, and m(p, pi) is the

ith RF kernel. The RF certainty distribution for the example

scenario (described in Fig.1) is shown in Fig. 3(b). Since

there are three RFID-tagged items in the pile, the figure

shows three spherical regions that represent the Gaussians

centered at each of the localized RFIDs.

RF-Visual Uncertainty Map: Given both the visual

uncertainty map and the RF certainty map, FuseBot

constructs an RF-Visual uncertainty map by adding the two

maps pixel-wise (i.e., C + R). In the above example with

two piles and three RFID-tagged items, Fig. 3(c) shows

the resulting RF-Visual uncertainty map. Notice how by

applying the RF masks as a negative mask to the voxel grid

values, FuseBot folded the certainty gained from RF into the

uncertainty from the visual information.

C. RF-Visual Occupancy Distribution Map

So far, we have described how FuseBot constructs a 3D

probability distribution of possible locations of the target item

by fusing RF and visual information. Next, we describe how

FuseBot also leverages the target item’s size and shape to

further improve the occupancy distribution map. Intuitively,

the target’s size constrains the potential regions it can occupy

in the occluded region since, for example, larger targets cannot

fit into narrow regions of the pile.

To fold the target size into the distribution, FuseBot employs

a similar approach to the RF kernel described in section IV-B.

Specifically, it creates a target occupancy kernel that summa-

rizes all the possible orientations of a target object using the

following target gaussian kernel:

k(p) =

{

e||p||
2/(2d2s)

ds

√
2π

||p||2 ≤ dl

2

0 ||p||2 > dl

2

where p is the point where we are evaluating the kernel,

ds and dl are the shortest and longest distance of the target

object bounding box respectively, and || · ||2 represents the L2

norm.3

To combine the geometric data from this target gaussian

kernel with the previously computed RF-Visual uncertainty

map, FuseBot performs a 3D convolution of the RF-Visual

uncertainty map and the target’s gaussian kernel. Intuitively,

after convolution, the regions that can fit the item of interest

in more possible orientations will have voxels with higher

weights than other regions of the unknown environment.

Hence, the resulting 3D occupancy distribution now encodes

the visual uncertainty, RFID tagged items, and the shape and

size of the target item.

Fig. 3(d) shows the resulting RF-Visual occupancy distribu-

tion from this convolution operation (for the scenario described

earlier in Fig.1). Notice that in this distribution, regions near

the RFID tags, as well as those near the edge of the pile, have

lower probabilities (blue/white) than other regions in the pile.

Generalizing to other scenarios: Our discussion in this

section has focused on the case of a fully-occluded non-tagged

target item. The method can be generalized to other scenarios

in a number of ways:

• When the target object is RFID tagged and not in the line

of sight, FuseBot uses the calculated RF kernel in order

3One interesting difference between the RF kernel and the target kernel is
that the RF kernel is larger since the RFID tag is on the surface of the object,
while the target item kernel is defined from the object’s center (dl for the RF
kernel vs dl/2 for the target kernel).



Fig. 4: RF-Visual Extraction. a) FuseBot performs depth based object segmentation to separate different objects in the environment. b) FuseBot uses the 3D
occupancy distribution of the target item. c) FuseBot projects the occupancy distribution on each segmented mask. d) FuseBot sums the projected distribution
on the area of each mask, and then chooses the mask with the highest sum. d) FuseBot chooses the next-best-grasp to extract the target item.

to build the occupancy distribution of the RFID tagged

target object. The RF kernel in this case is positive and

the visual uncertainty is ignored.

• In cases where the target object is unoccluded (or partially

occluded), FuseBot can leverage prior approaches for

identification and grasping to retrieve the target item from

the pile [7, 8, 21, 22].

• Finally, it is worth noting that FuseBot’s approach ex-

tends to deformable objects. In particular, even though

the kernels (RF kernel and target kernel) leverage an

object’s bounding box, they only use this information

to decrease the likelihood of certain regions, but do not

eliminate them completely. The success in working with

deformable objects is demonstrated empirically in VIII.

V. RF-VISUAL EXTRACTION POLICY

In the previous section, we explained how FuseBot builds

a 3D RF-Visual occupancy distribution for a target item’s

location. Given this distribution, one might think that the

robot could immediately move towards the voxel with the

highest probability to extract the target object. However, since

the target object is fully occluded, the robot cannot directly

access it. Instead, it must first remove anything covering the

target object. In this section, we describe FuseBot’s RF-Visual

extraction policy that decides which object to remove in order

to most efficiently extract the target object.

The goal of designing the extraction policy is to minimize

the overall number of actions required to retrieve the target

object. If the robot was certain of the target item’s location,

it could simply remove anything covering the object, then

extract the target object. However, while FuseBot leverages

RF-Visual perception to minimize uncertainty, the occupancy

distribution may still have multiple areas of high probability,

leaving ambiguity in the target item’s location. One could think

of moving towards the region with the highest probability and

searching for the target object there until it either finds the

object or eliminates the search area. However, this may result

in an inefficient search, especially in complex scenarios, where

there are multiple large piles. Thus, to enable efficient retrieval,

FuseBot needs an extraction policy that not only leverages the

probability distribution of the target item’s location but also the

expected information gain of a given action and the likelihood

of a successful grasp action.

At the core of enabling an efficient retrieval policy is

identifying the next best object to grasp. To this end, FuseBot

transform its voxel-based representation of the environment

into an object-based representation, which assigns a certain

expected gain for grasping each of the visible objects. To do

this, FuseBot performs instance segmentation which gives the

mask and surface area of each visible object in the scene, as

shown in Fig. 4(a). Next, in Fig. 4(c), it vertically projects all

the voxels below a given mask onto the mask and integrates

over the mask area. In principle, this provides it with the total

utility of extracting the corresponding item (including both the

probability distribution and information gain).

Note however that the approach of simply projecting all

the probability below an object onto the surface assumes that

removing that object would reveal all the voxels below it. In

practice, this is not true because the object only has a limited

thickness. While FuseBot does not know the thickness of each

item, we can safely assume that voxels near the top of the pile

are more likely to be eliminated when an object is removed. To

bias the search towards this information gain, FuseBot applies

a weighting function that increases the weights of voxels

closer to the surface of the pile. The sum of these weighted

probabilities, or score of each mask, now optimizes for both

the information gain and probable tag locations for each visible

object. The score is formalized in the below equation:



si =
∑

x,y∈mi

zmi
∑

z=0

γ
(zmi

−z)

0.025 × px,y,z (1)

where si is the score of mask i, mi is all (x,y) points

contained within the ith mask, zmi is the maximum z under

the ith mask, and px,y,z is the probability from the occupancy

distribution for point (x,y,z). γ is the discount factor for

weighting the probability4.

Incorporating Grasp Quality. While these scores incentivize

both exploiting the probability distribution and maximizing

information gain, they do not account for the likelihood

of failed grasping attempts. To do this, FuseBot computes

the probability of a successful grasp for each point in the

environment using a grasp planning network. FuseBot then

selects the best possible grasp within each object mask. The

grasp qualities of each mask are formalized in the below

equation:

gi ← max
(x,y)∈mi

g(x, y) (2)

where gi is the best grasp probability for the ith mask, g(x, y) is

the grasp probability for point (x,y) given by the grasping net-

work, and mi is all (x,y) points contained within the ith mask.

FuseBot now uses the grasping quality and mask scores

to find the optimal extraction policy by optimizing for the

following:

max
i

si ×
⌈

gi − τ
⌉

where i is the mask number and τ is the threshold for

acceptable grasping quality. gi and si are the grasping quality

and the score for the ith mask, and ⌈.⌉ is the ceiling function.

FuseBot first evaluates objects with a greater than τ grasp

quality, selecting the object with the best weighted probability

score5. If no high probability grasps are available, it then

selects the object with the best score regardless of grasp

quality. The overall algorithm is summarized in Alg. 1.

A few additional points are worth noting:

• Since the workspace may be larger than the field of view

of the robot’s camera, FuseBot begins by clustering the

occupancy distribution and selecting the area with the

highest average probability. The robot moves over this

area before computing the object masks and grasp qual-

ities and executing the RF-Visual extraction policy. This

ensures that FuseBot can extend to any size workspace

within the robot arm’s reach.

• After each grasp attempt, the robot returns to the position

where it grasps in order to locally update the occupancy

distribution. It takes new RGB-D images to update a

10cm × 10cm × 10cm region around the grasp point, as

well as determine if the target object was uncovered by

the latest grasp.

4In our implementation, γ is set to 0.95
5In our implementation, τ is set to 0.8

• At any point, if FuseBot identifies the target object, it

ends the RF-Visual extraction policy and proceeds to

grasping the target object.

Algorithm 1 RF-Visual Extraction Policy

while Grasp Actions ≤ 15 do

SEGMENTATION

Compute object segmentation with SDMRCNN[9]

TARGET OBJECT SEARCH
for mask mi in SDMRCNN do

if mi == Target Object then

Grasp Target Object
Return

end if

end for

MASK SCORING

for mask mi in SDMRCNN do

si =
∑

x,y∈mi

∑zmi
z=0 γ

(zmi
−z)

0.025 × px,y,z
gi ← max(x,y)∈mi

g(x, y)
end for

MASK SELECTION

if Any gi > τ then

selected mask ← maxgi>τ (si)
else

selected mask ← maxi (si)
end if

Grasp selected mask
end while

VI. IMPLEMENTATION

Physical Setup. We implemented FuseBot on a Universal

Robots UR5e robot [31] with a Robotiq 2F-85 gripper [29]. We

mounted an Intel Realsense D415 depth camera [19] and two

WA5VJB Log Periodic PCB antennas (850-6500 MHz) [20]

on the gripper. The antennas are connected to two Nuand

BladeRF 2.0 Micro software radios [27] through a Mini-

Circuits ZAPD-21-S+ splitter (0.5-2.0 GHz). To obtain RFID

locations, we implemented an RFID localization module using

the wrist mounted antenna and BladeRFs through a similar

method as past work [24, 6]. We used standard off-the-shelf

UHF RFID tags (the Smartrac DogBone RFID [18]) that costs

around 3-5 cents.

Control Software. The system was developed and tested on

Ubuntu 20.04 and ROS Noetic. We used MoveIt [14] as the

inverse-kinematic solver to control the robot through the UR

Robot Driver package [30]. The visual map of the environment

is created using Octomap [15]. We used Synthetic Depth

(SD) Mask R-CNN [9] to perform instance segmentation

of the scene and segments objects in the scene. To predict

the grasping quality from the depth images, we used GG-

CNN [25, 26]. The baseline, X-Ray [10] was implemented

based on the published code [12].

VII. EVALUATION

A. Real-World Evaluation Scenarios

We evaluated FuseBot in a variety of real-world scenarios

with varying complexity, some of which can be seen in Fig. 5.

The scenarios had between 1 and 3 distinct piles of items, 0-10



Fig. 5: Example Evaluation Scenarios. This shows some of the evaluation
scenarios for A) 1 pile B) 2 piles, and C) 3 piles. The target item is fully
occluded in all the scenarios.

RFID tagged objects, and a variety of target object and RFID

tagged object sizes. Each experiment had one target item and

10-40 other distractor objects. Experiments included varying

distances between the target item and the nearest RFID tagged

item, including setups with an RFID tagged item touching the

target item, RFID tagged items in the same pile as the target

item, or all RFID tagged items in different piles than the target

item. We also evaluated FuseBot in scenarios where the target

object was tagged with an RFID.

Similar to prior work [10] that uses color-based object

identification for simplicity, the target item is a red item and

FuseBot uses an HSV color segmentation to identify when the

target item is in line-of-sight. We note that this step can be

replaced by any target template matching network such as the

one used in [8] to identify target objects of any type.

We use everyday objects, both deformable and solid, in

our evaluation, including office supplies, toys, and household

items like gloves, beanies, tissue packs, travel shampoo,

stuffed animals, and thread skeins.

B. Baselines

We compared FuseBot’s performance with X-Ray [11]. X-

Ray works by estimating 2D occupancy distributions and

selecting the object with the highest total probability within its

mask to pick up. X-Ray relies entirely on visual information

and has no mechanism for RF-perception.

C. Metrics

Number of actions: We measured the number of grasping

actions that were needed to extract the target item from the

environment. Actions include grasping a non-target object,

target object, or failing to grasp anything.

Success rate: We also evaluated the success rate of our

system and the baseline. An experimental trial was considered

a failure if the robot performed 15 actions and failed to

retrieve the target item, or if the robot performed 5 consecutive

grasping attempts that failed to grasp any item.

Search & Retrieval Time: We measured the time during

which the robot was moving in each successful mechanical

search and retrieval task. For FuseBot, this time included the

scanning step required to localize the RFIDs.

VIII. RESULTS

A. Baseline Comparisons

We evaluated FuseBot and X-Ray in 181 real-world ex-

perimental trials. The experiments covered multiple different

scenarios of various complexities with 1-3 piles, 0-10 RFID

tagged items, and different target object sizes. We tested

X-Ray and FuseBot in the exact same scenarios, but we

repeated FuseBot multiple times in each scenario with different

combinations of RFID tagged item locations and numbers. We

measured the number of actions it took to find and retrieve the

target item, the success rate of each system, and the search and

retrieval time for each system. Recall from Section VII(c) that

an experimental trial is considered successful if the robot can

find and retrieve the target item within 15 actions.

Number of Actions

System 10th pctl Median 90th pctl Success Rate

FuseBot (Untagged) 2 3 6 95%
FuseBot (Tagged) 2 2 5 95%

X-Ray 2 5 11 84%

TABLE I: Efficiency and Success Rate. The table shows the success rate
as well as the 10th, 50th, and 90th percentiles for the number of actions for
both FuseBot and X-Ray. The performance of FuseBot is shown for scenarios
where the target item is tagged and where it is non-tagged.

1) Overall Number of Actions: Table I shows the 10th, 50th,

and 90th percentiles of the number of actions required to find

and extract the target object. It includes results from FuseBot

with RF-tagged target objects, FuseBot with non-tagged target

objects, and X-Ray. We make the following remarks:

• FuseBot needs only 3 actions at the median to retrieve

non-tagged target item, improving 40% over X-Ray’s

median number of actions of 5. This shows that FuseBot

is able to retrieve non-tagged target items more efficiently

than the state-of-the-art vision-based baseline across a

variety of scenarios.

• The 90th percentile of FuseBot with non-tagged items is 6

actions, while X-Ray’s 90th percentile is 11 actions. This

shows that FuseBot is able to perform more reliably, with

a 45% improvement over the state-of-the-art at the 90th

percentile.

• When searching for a tagged target item, FuseBot requires

only 2 actions on median, and 5 actions for the 90th per-

centile. Note that here it performs better than extracting

a non-tagged item. This is expected because localizing

the tagged target item reduces the uncertainty about its

location and makes mechanical search more efficient.



This result shows that FuseBot’s performance matches

that of past state-of-the-art systems that are designed to

extract RFID-tagged items [6];6 moreover, unlike these

prior systems, FuseBot’s benefits also extend to non-

tagged items.

2) End-to-end Success Rate: Table I reports the end-to-end

success rate. The results show that FuseBot is able to retrieve

the target item 95% of the time for non-tagged and tagged

target objects, while X-Ray is only able to do so in 84% of

scenarios. This demonstrates that FuseBot not only improves

the efficiency, but also the success rate of mechanical search.

3) Search & Retrieval Time: Table II shows the search &

retrieval time for both FuseBot and X-Ray. Here, it is worth

noting that the robot was programmed to move at the same

speed across all experimental trials. We make the following

remarks:

• FuseBot only requires 62 seconds at the median, while

X-Ray’s median is 142 seconds, showing more than 2x

improvement over the baseline’s performance.

• The 90th percentile of FuseBot is 132 seconds, while X-

Ray requires a 90th percentile of 237 seconds, showing

the improvement in reliability of FuseBot over X-Ray.

• This improvement in search & retrieval time shows

that FuseBot is more efficient than the baseline despite

requiring an additional scanning step.

Search & Retrieval Time (sec)

System 10th percentile Median 90th percentile

FuseBot (Untagged) 40 62 132
X-Ray 50 142 237

TABLE II: Search & Retrieval Time. The table shows the 10th, 50th, and

90th percentiles for the search and retrieval time of both FuseBot and X-Ray.

4) Scenario Complexity: We evaluated FuseBot for non-

tagged target objects and X-Ray across three scenarios of

different complexities.

• In the first level of complexity, the systems were evalu-

ated on a setup with 2 distinct piles of objects and a total

of 20 distractor objects.

• In the second level of complexity, the systems were

evaluated on a setup with 3 distinct piles of objects and

a total of 25 distractor objects.

• In the third level of complexity, the systems were evalu-

ated on a setup with 3 distinct piles of objects and a total

of 42 distractor objects.

Fig. 6a plots the number of actions required to find and

retrieve the target object for both FuseBot (green) and X-Ray

(blue) across three scenarios of different complexities. The

error bars indicate the 10th and 90th percentiles. We make the

following remarks:

• Across all levels of complexity, FuseBot outperforms the

baseline in terms of both its median and 90th percentile

efficiency. This shows that the benefits of RF-perception

extends to complex scenarios.

6See Fig. 14 in [6].

• In more complicated scenarios with a larger number of

distractor objects, both FuseBot and X-Ray require more

actions to retrieve the target item. Interestingly, for more

complex scenarios, FuseBot’s efficiency gains increase

over the baseline.

B. Microbenchmarks

In addition to baseline comparisons, we performed mi-

crobenchmarks to quantify how different factors impact the

performance of FuseBot.

1) Number of RFID Tagged Items: Recall from IV-B that

FuseBot creates an RF kernel for each identified and localized

RFID tagged item, and uses the kernels to build the occupancy

distribution. The occupancy distribution gives FuseBot better

insight into the location of the target item. We quantified

how the system performs with different numbers of RFID

tagged items through 54 experiments in the same scenario

with varying numbers of RFIDs. In this scenario, we have 3

different piles with a total of 25 objects.

Fig 6b plots the number of actions required to retrieve

the target item vs. the number of localized RFIDs in the

environment for FuseBot (green) and X-Ray (blue). The error

bars denote the 10th and 90th percentiles. Since X-Ray does

not utilize RFIDs, the results are not separated by number of

RFIDs. We make the following remarks:

• As the number of localized RFIDs in the environment

increases, FuseBot’s median number of actions decreases,

dropping from 4 with no RFIDs to 2 with only 6-

9 RFIDs. This improvement in efficiency is expected,

because additional RFID tagged items increase the num-

ber of RF kernels, which in turn narrows down the

candidate locations for the non-tagged target item. More

generally, this result shows that leveraging RF perception

improves the efficiency of mechanical search, and that

the improvement is proportional to the number of RFID

tagged items.

• Interestingly, even with 0 RFIDs, FuseBot outperforms X-

Ray. Specifically, it requires a median of only 4 actions,

while X-Ray requires 7 for the same scenario. This is due

to two main reasons. First, while FuseBot leverages a 3D

distribution, X-Ray only uses a 2D probability distribu-

tion which does not account for the height of different

objects. Second, unlike FuseBot, X-Ray does not account

for grasp quality when selecting an object to remove from

the pile. This makes it susceptible to choosing objects that

are more difficult (hence less efficient) to grasp.

2) Distance from Nearest RFID to Target Item: Our next

microbenchmark aims to investigate whether the presence

of an RFID-tagged item near the target item would impact

the performance. Specifically, one concern with applying the

negative mask is that it biases the extraction policy away from

the RFID-tagged item. To investigate this, we ran 51 real-world

experiments across three scenarios:

• Touching: In this category, there is at least one RFID

tagged item in direct contact with the target item.



(a) Impact of Scenario Complexity. (b) Impact of the Number of RFIDs. (c) RFID To Target Item Distance.

Fig. 6: Impact of Different Parameters on Performance. (a) This figure plots the number of actions required by both FuseBot and X-Ray across three
different scenarios of increasing complexity. (b) The figure plots the number of actions vs. the number of localized RFIDs across fully occluded real-world
experiments. (c) This figure plots the median number of actions for FuseBot to retrieve the target item for different RFID to target item distances. X-Ray’s
median number of actions across all scenarios is shown in blue. The error bars denote the 10th and 90th percentile respectively.

• Opposite Side of Pile: In this category, all RFIDs are

either on the opposite side of the target item’s pile or in

different piles than the target item.

• Different Piles: In this category, all RFIDs are in different

piles than the target object.

Fig. 6c plots the median number of actions required to find

the target item in each of the three categories of scenarios

described above, shown in green. The error bars denote the

10th and 90th percentiles. For comparison, the blue bar show

the performance of X-Ray in the same scenario. Since X-Ray

does not leverage RFIDs, its performance is not separated into

different categories. We make the following remarks:

• Different Piles, Opposite Side of Pile, and Touching re-

quire only 2, 3, and 3 actions at the median, respectively.

However, X-Ray requires 7 actions to retrieve the target

item. This shows that FuseBot outperforms the baseline

across all categories of scenarios, even when an RFID

tagged item is touching the target object.

• In Touching, the median number of actions is similar to

Different Piles and Opposite Side of the Pile, however

the 90th percentile is worse. This is expected because the

negative RF mask biases the search away from the target

object. However, it is important to note that the 90th is

only 5 actions.

Number of Actions

Extraction Policy 10th pctl Median 90th pctl

RF-Visual Extraction 2 2.5 4
Naive Extraction Policy 2.1 4 6.9

TABLE III: Impact of Extraction Policy on Efficiency. The table shows

the 10th, 50th, and 90th percentiles of the number of actions of FuseBot

with different extraction policies

3) Impact of Extraction Policy: Next, in order to evaluate

the benefits of FuseBot’s RF-Visual extraction policy, we

implemented a simpler extraction policy that does not optimize

for information gain. The simpler policy operates in two steps:

first, it selects the voxel with the highest probability in the

RF-Visual occupancy distribution (from RF-Visual Mapping);

then, it performs the best grasp that is within 5cm of the

voxel’s projection on the surface of the pile.

Table III shows the 10th, 50th, and 90th percentiles of

the number of actions required to successfully extract the

target item for FuseBot with both extraction policies for the

same set of scenarios with a fully-occluded untagged target

item. The result shows that the RF-Visual extraction policy

allows FuseBot to successfully complete the task with 2.5

median actions. In contrast, when using the naive extraction

policy, it requires 4 median actions. Furthermore, the 90th

percentile of FuseBot’s extraction policy is only 4 actions,

while the naive policy requires 6.9 actions. This performance

improvement is due to the fact that FuseBot’s RF-Visual

extraction policy optimizes for information gain, allowing it

to search the environment more efficiently than the simpler

extraction policy.

IX. DISCUSSION & CONCLUSION

This paper presented FuseBot, the first RF-Visual mechan-

ical search system that leverages RF perception to efficiently

retrieve both RF-tagged and non-tagged items in the envi-

ronment. The paper presents novel primitives for RF-Visual

mapping and extraction and implements them into a real-time

prototype evaluated in practical and challenging real-world

scenarios. Our evaluation demonstrated that the mere existence

of RFID-tagged items in the environment can deliver important

efficiency gains to the mechanical search problem.

Our evaluation of FuseBot in end-to-end retrieval tasks also

revealed a number of interesting insights. While FuseBot’s

design focused on retrieving untagged target items, our results

showed that its efficiency in extracting RFID tagged target

objects matches that of state-of-the-art RF-Visual mechanical

search systems that can only extract RFID-tagged objects. Our

evaluation also showed that FuseBot is successful and efficient

in performing mechanical search across piles with deformable

objects. As the research evolves, it would be interesting to

explore how incorporating more complex models that account

for deformability would allow FuseBot to achieve even higher

efficiencies.

In conclusion, with the rapid and widespread adoption

of RFID tags across various industries, this paper uncovers

how RF perception can play a role in making robotic tasks

more efficient and reliable for various industries such as

warehousing, manufacturing, retail, and others.
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