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Abstract—Locating RFID-tagged items in the environment and
guiding humans to retrieve the tagged items is an important
problem in the RFID community. This paper explores how to
exploit synergies between Augmented Reality (AR) headsets and
RFID localization to help solve this problem by improving both
user experience and localization accuracy. Using fundamental
mathematical formulations for RFID localization, we derive
confidence metrics and display guidance to the user to improve
their experience and enable them to retrieve items faster. We
build our primitives into an end-to-end system, RF-AR, and
show that it achieves 8.6 cm median localization accuracy within
76 seconds and enables 55% faster retrieval than state-of-
the-art past systems. Our results demonstrate that AR-based
“human-in-the-loop” designs can make the localization task more
accurate and efficient, and thus holds the potential to improve
processes where items need to be retrieved quickly, such as in
manufacturing, retail, and warehousing.

Index Terms—Augmented Reality, Virtual Reality, RFID Lo-
calization, User Interface, Human-in-the-loop, RF sensing

I. INTRODUCTION

Augmented Reality (AR) and Virtual Reality (VR) enhance
the interactions between humans and computers by offering an
effective user interface. For example, AR glasses can signif-
icantly streamline operations in logistics and warehousing by
visualizing the incoming customer orders and guiding the op-
erators in the environment. In manufacturing, AR/VR glasses
can display the next steps and tools to workers to improve
accuracy and efficiency. Because of this immense potential to
revolutionize the human-machine interface and the potential
applications in future industries, substantial investments have
been made in developing AR/VR headsets by governments
and big tech companies.

Current AR/VR headsets are equipped with various sen-
sors such as RGB and depth cameras, inertial sensors, and
microphone arrays. While these devices are capable of hand
tracking, mapping, and self-localization in their environment,
their perception is as limited as humans. For instance, in the
case of a store associate attempting to locate and retrieve a
specific package from a customer’s order, the AR/VR headset
is unable to locate the package, guide the wearer towards it,
or assist with the task unless there is a clear line of sight from
the headset cameras to the packages barcodes.

One approach to enable new capabilities for AR/VR head-
sets is to leverage Radio Frequency (RF) signals. Since RF sig-
nals can traverse boxes and walls, they extend the perception
beyond the line of sight. More specifically, RF sensing can be
utilized to identify and sense Radio Frequency Identification
(RFID) tagged items in the environment. Passive RFID tags
are around 3-5 cents and are widely used.

Past work exploring the combination of RF and AR tech-
nologies have designed the wireless localization and AR
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Fig. 1: RF-AR. RF-AR incorporates a dynamic RF-based user interface and
brings the user in the loop to locate RFID tagged items. It uses color coding
to communicate signal strength, projects an elliptical hologram to show the
region on interest for the tag, and displays an arrow to help the user optimize
their path to localize the target item.

system as separate entities. RF-AR, however, considers how
to synergistally combine the two to deliver new functionalities
to improve the RFID localization accuracy as well as the user
experience.

In this paper, we present RF-AR, an AR system that
seamlessly integrates RF perception and localization into the
user experience. Our system introduces a new “human-in-the-
loop” design and provides a dynamic RF-based user interface
to help users efficiently and accurately localize hidden RFID
tags in the environment. Particularly, RF measurements from
different locations are required to locate target RFID tags, and
it is especially critical to achieve proper measurement aperture
for accurate and quick tag localization [1]–[3]. However, it
is quite complicated for a typical AR user to optimize their
path or measurement aperture without prior knowledge of
the target item’s location and a complete understanding of
RF measurements and localization techniques. Thus, the key
challenge is integrating RF perception into a user-centered
design such that we abstract away all the technical details but
still provide meaningful information that can be understood
by a user with no RF knowledge.

To overcome these challenges, RF-AR introduces two main
innovations:
• Path Optimization: RF-AR predicts the quality of RFID

measurements in potential trajectories, determines the optimal
one, and directs the user along that path, as shown in Fig. 1.
RF-AR creates a candidate list of next possible locations
for a user to walk to. For every candidate location, RF-AR
considers: 1) the reduction in Dilution of Precision (DoP)
[4] that a measurement taken at that location would yield,
2) the distance to the estimated target item location, and 3)
the expected Signal-to-Noise Ratio (SNR).

• Dynamic RF-based User Interface: RF-AR introduces
a dynamic RF-based user interface that provides essential RF



information while abstracting away the complicated technical
details. RF-AR employs simple visualizations to provide seam-
less feedback to the user in a way that biases their trajectories
toward the tag location, and brings them in the loop for
localizing RFID tagged objects as shown in Fig. 1.

RF-AR explores multiple user interface implementations
of varying levels of complexity to determine whether more
sophisticated and involved displays better assist the user. To
do this, RF-AR tests combinations of different prompts:

1) Color coding to communicate to the user whether they are
successfully receiving RF measurement with an acceptable
SNR

2) Visualizing a hologram to picture the region of confidence
around the estimated location of the target item

3) Guiding the user with an arrow to follow the optimized
trajectory
We implemented an end-to-end prototype of RF-AR, tested

our system on 20 users1, and evaluated its performance in
80 trials. Using our system, users were able to locate the
hidden RFID tagged target items with 8.6 cm accuracy within
a median of 76 sec. We also compared our performance to a
baseline [2], showing that with the baseline, it takes users 55%
longer (118 sec) to locate the RFID tag compared to RF-AR.

II. RELATED WORK

Prior work that fuses RF and AR have designed RF sensing
modules as separate entities and either completely keep the
user out of the loop or fail to create a sophisticated system to
optimize their task. For example, existing RFID-AR systems
leverage their “AR” smart phones or separate monitors for the
sole purpose of visualizing primitive displays of tagged items
in the environment [5]–[9]. Other work providing information
to users via glasses or headsets for non RFID localization tasks
such as assembly, picking or walking either provides no visual
display to the user [10], needs pre-prepared infrastructure [11],
or cannot actively guide the user but rather confirm correct
action following task completion [7].

More, recent work has explored enabling RFID sensing on
an AR headset by leveraging a custom designed antenna and
natural human motion to localize RFID tags [2]. Practically,
this system, called X-AR, has minimal interaction with the
user and reduces them to mere headset carriers, which fails
to recognize the purpose of AR devices to incorporate users
as active participants within the system, rather than passive
carriers of the device, similar to a hand-held RFID reader.

III. PRIMER: WIDEBAND SAR LOCALIZATION

Synthetic Aperture Radar (SAR) is a technique for local-
ization and imaging. In contrast to standard antenna arrays,
SAR relies on a single antenna moved to multiple locations
to collect measurements and emulate an antenna array. To
carry out SAR, RF-AR leverages an antenna mounted on the
AR headset and captures measurements as the user walks
throughout the environment. The location of the antenna is

1This study was approved by the institution’s IRB.

estimated by the visual-inertial odometry (VIO) system of the
AR headset. When a passive RFID tag powers up and responds
with its identifiers, RF-AR uses this response to estimate the
wireless channel h(t) as h =

∑
t y(t)x

∗(t) where x∗(t) is
the conjugate of the transmitted signal x(t), and y(t) is the
received signal.

We can then estimate the power P received from every point
in space based on the estimated wireless channel using the
following equation. It is worth noting that RF-AR exploits
frequency diversity by taking measurements over a wideband
of frequencies to improve the localization accuracy. Formally:

P (x, y, z) =

∣∣∣∣∣
∣∣∣∣∣ 1K 1

N

K∑
j=1

N∑
i=1

hi,je
2πdi(x,y,z)

λj

∣∣∣∣∣
∣∣∣∣∣ (1)

where N is the total number of measurements, K is the total
number of frequencies, hi,j is the channel estimation of the ith

location with the jth frequency, di is the round trip distance
from (x, y, z) to the ith location, and λj is the wavelength
of jth frequency. Finally, the location of the tag, ptag can be
determined using the following formula:

ptag = argmax(x,y,z)(P (x, y, z)) (2)

IV. PATH OPTIMIZATION

In this section, we describe RF-AR’s approach for path
optimization. Remember that RF-AR’s goal is to optimize
RFID localization by bringing the user into the loop. As
a first step, RF-AR has to determine what would be the
optimal trajectory for the user. To do this, every time RF-AR
receives a new RF measurement, it creates a list possible
next locations for a user to walk to. It predicts the quality
of an RF measurements at each candidate location, and then
directs the user towards the best location with a holographic
arrow. To estimate the quality of an RF measurement for target
item localization, RF-AR analyzes multiple factors: 1) DoP, 2)
SNR, and 3) distance to the estimated target location. In this
section, we elaborate on each factor separately.
A. Dilution of Precision

To improve the accuracy of RFID tag localization, RF
measurements should be taken over a wide aperture. This is
because each RF measurement inherently suffers from some
level of error. When combining multiple RF measurements as
explained in §III, these errors can accumulate and significantly
increase the localization error. This phenomenon is called
DoP [4]. When RF measurements are taken over a wider
aperture, the DoP will be smaller, meaning that the effect of
small errors in each RF measurement on the final localization
accuracy will be less significant.

Formally, we can calculate the DoP value based on RF
measurement positions as follows:

A =
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where (xi, yi, zi) correspond to the location of the antenna at
time i, (xp, yp, zp) is the estimated target RFID tag location
calculated from the collected RF measurements described in
§III, Ri is the distance from (xi, yi, zi) to (xp, yp, zp), and
tr(.) is the trace of matrix.

RF-AR uses the DoP as a metric to evaluate the potential
of a measurement taken at a given position to aid in localizing
the tag. First, to determine a position for consideration, RF-AR
uses information regarding the speed the user is walking at to
estimate the location of the user at time t. For example, if the
user is at a current location p⃗c = (xc, yc, zc) while moving at
the speed v in direction θc, the future measurement position
p⃗f after a period time ta can be estimated as:

r⃗(θc, v, ta) = [vta cos(θc), vta sin(θc), 0] (5)
p⃗f (θc, v, ta) = p⃗c + r⃗(θc, v, ta) (6)

At the position p⃗c, RF-AR calculates how much the DoP
would change if the user moves to p⃗f . The improvement in
DoP can be described by the function C1(θc, v, ta) defined as:

C1(θc, v, ta) = DOP{p⃗1,p⃗2,. . . ,p⃗c,p⃗f} −DOP{p⃗1,p⃗2,. . . ,p⃗c} (7)

where {p⃗1, p⃗2, . . . , p⃗c} are past measurement positions and pf
is the candidate future measurement position.

B. SNR

Another important metric for evaluating the quality of RF
measurements is SNR. Without sufficient SNR, an RF mea-
surement is not able to accurately estimate the wireless channel
and help determine the location of the RFID tag as detailed in
Sec. §III. A measurements’ SNR can be influenced by multiple
factors, including the distance and angular separation between
the antenna and the target RFID tag, the antenna’s radiation
pattern and gain, and environmental noise and interference.
Since the environmental multipath and noise is hard to predict
and the antenna gain does not change, in this subsection, we
focus on estimating the quality of SNR at a candidate position
by considering the angular separation between the user and the
estimated location of the RFID tag. It is important to note that
we assume a user is looking in the direction they are walking.

Recall that RF-AR has an antenna on its headset’s visor.
As shown in Fig. 2a, if an RFID tag is in front of the headset
and within the field of view of antenna, the RF measurement
should have good SNR. However, as shown in Fig. 2b, if an
RFID tag is outside the field of view of the antenna, RF-AR
cannot obtain an RF measurement with acceptable SNRs.
RF-AR takes this understanding into account when estimating
the quality of future RF measurements.

First, RF-AR calculates the angle ψ between the direction
normal to the headset visor and its estimate of the target RFID
location as:

r⃗h(θc) = [cos(θc), sin(θc), 0] (8)

r⃗tg = p⃗tg − p⃗c (9)

ψ(θc) = cos−1 r⃗tg · r⃗h(θc)
∥r⃗tg∥∥r⃗h(θc)∥

(10)

where r⃗h is the heading vector of the user walking in direction
θc, and r⃗tg is the vector from the current user location to the
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Fig. 2: Varied RFID Tag and AR headset Configurations.

estimated location. Based on ψ, RF-AR estimates the quality
of SNR and scores it as follows:

C2(θc) = | sin(ψ(θc))|, ψ ∈ [−π
2
,
π

2
] (11)

where C2 is the estimate quality of RF measurement SNR.

C. Distance to the target

An important factor that impacts the efficiency of finding
hidden objects is the distance the users have to walk. Thus,
RF-AR evaluates the quality of future RF measurement loca-
tions by also considering their distance to the target location.
Specifically, the distance component of measurement quality
can be formulated as:

C3(θc, v, ta) = ||p⃗tg − p⃗f || (12)

where p⃗tg is the RF-AR’s estimated location of the target RFID
tag and p⃗f is the future measurement position as described in
Eq.6.

D. Total Cost function

Ultimately, RF-AR incorporates all the factors mentioned
above to decide on optimal candidate location to guide the
user to. In practice, RF-AR samples θc from a discrete set
of angles Sθ, and calculates the candidate RF measurement
locations usiing to Eq. 6. To find the optimal guided direction
θ∗c , RF-AR minimizes the following cost function:

θ∗c = argmin
θc

C1(θc, v, ta) + C2(θc) + C3(θc, v, ta) (13)

Based on the found θ∗c , RF-AR then guides users towards the
optimal path using a holographic arrow as we explain in the
following section.

V. RF-BASED DYNAMIC USER INTERFACE

In the previous sections, we summarized the SAR
techniques for localization and described our path optimization
algorithm. In this section, we describe how our system
translates these concepts and creates an interactive and
dynamic user display for optimized RFID localization.

Our goal is to create visual cues and holographic prompts
that abstract away all the technical detail of RF measurements
while still enabling the user to efficiently find hidden RFID
tagged objects. Specifically, our focus is on providing the
user with actionable prompts that reduce the overall time and
distance traveled needed for RFID localization. Our design
explores various RF-based user interfaces of varying degrees
of sophistication. We describe the components of the user
interfaces below.



(a) SNR Cue (b) Displaying Confidence (c) Arrow Directing Users

Fig. 3: RF-based Dynamic User Interface. (a) Examples of SNR visual cues given to the users. The system displays a blue color prompt to the user when
the SNR is greater than µ, and changes the color to red when the SNR is smaller than µ. (b) A holographic ellipsoid communicates the current estimated
location and its confidence to the user (c) An arrow that shows the direction to the next optimal location suggested by RF-AR’s path optimization algorithm.

A. SNR Cue

Our system’s first visual cue exploits the SNR to create
an indicator for the user. As previously mentioned, low SNR
prevents proper estimation of the wireless channel. Recall from
§III that for each measurement, RF-AR performs multiple
channel estimations over 200 MHz of bandwidth and then
averages the result. Thus, we assume that a low average SNR
at a position is not the result of environmental interference
(which is unlikely to manifest at all frequencies), but rather
the result of the user (and the visor-mounted antenna) facing
a direction where the tag is not located.

By communicating the SNR status through a color-coded
floating widget, as in Figure 3a, users can rule out possible
tag locations and position themselves to optimize channel
measurements. If the SNR is larger than µ, the system shows
the user blue color, whereas if the SNR is smaller than µ, it
shows the user red color for warning. We select µ such that
RF measurements above the threshold2 provide useful channel
information. This simple and intuitive system enables users to
quickly and easily identify areas with optimal RFID signal
quality, allowing for efficient and accurate tag localization.

B. Displaying Confidence

In our AR application, we also visualize the concept of
confidence in the estimated location of the RFID. Recall that
SAR computes the power at each location in space based on Eq
1. To quantify the confidence of SAR in correctly determining
the peak power location (corresponding to the target RFID),
we select (x, y, z) points in space where the calculated power
falls within 0.75dB of the peak power. We then extract the
maximum distance along the x,y,z dimension for the selected
points. When the area of these points is very large, it shows
that SAR has not been able to narrow down the location of the
RFID tag with reasonable confidence. Since these points tend
to cluster into a 3D ellipse shape around the peak power, we
display to the user a holographic ellipsoid fit to the extracted
x,y,z axis, which is shown as the transparent blue ellipsoid in
Fig. 3b. We model the ellipsoid in the AR display using the
standard equations for Cartesian coordinate systems:

x2

a2
+
y2

b2
+
z2

c2
= 1 (14)

where a, b and c are the lengths of the semi-axis of the
ellipsoid that correspond to the extracted axis dimensions.

As the confidence interval size updates with the addition of
new measurements, the holograph of the ellipsoid updates as

2In our implementation, we chose this threshold µ = 4dB.

well. The RFID tag is considered confidently localized when
the axis dimensions of the ellipsoid fall below (τx, τy, τz)

3,
corresponding to a strong confidence in the predicted location
similar to past work [2].
C. Directing Users to Optimal Path

Section §IV describes how we select the optimal next loca-
tion for a measurement to increase the accuracy and efficiency
of RFID localization. In order to direct users to this location,
we display a blue arrow right above the floating canvas, as
seen in Fig. 3c. This arrow updates every frame to ensure that
it is always pointing the user in the correct direction as the user
moves and walks through the space. The arrow also updates its
pointing direction when new directions from path optimization
are sent. The pointing vector of the arrow is calculated every
frame as q⃗ =< xn−xh, yn−yh, zn−zh > where (xh, yh, zh)
are the coordinates just above the holographic floating canvas
(base of the arrow) and (xn, yn, zn) is the location that the
system guides the user to, which is formulated as p⃗n(θ∗c , v, ta)
and is defined in Eq. 6. To make sure that the arrow does not
point in an angled upward or downward direction that would
confuse users, we set zh equal to the height of the user’s head,
which is estimated by the VIO self-tracking of the AR device.

VI. IMPLEMENTATION
We programmed a custom application using Unity3D to

display all user interfaces detailed in §V. Front end application
graphics were designed in Figma and Adobe and then im-
ported to Unity3D. Scripts to support application functionality
were written in C# in Visual Studio IDE. We deployed our
application on a Microsoft Hololens 2. We used the same
antenna and hardware setup as [2] using BladeRFs, Raspberry
Pi, and power splitters. We tested our device using standard
off-the-shelf UHF RFID tags placed in cardboard boxes at
different locations. We implemented all processing outlined in
§III in C++ and python on the edge server which is an Ubuntu
20.04 machine with an Intel(R) Core(TM) i9-10900X CPU @
3.70GHz. We implement code in Python on the Rasberry Pi
to stream RFID channel measurements from BladeRFs to the
edge server. The AR headset’s UI then updates according to
the received messages from the edge server.

VII. EVALUATION

We evaluated RF-AR in an indoor environment that mimics
a warehouse. Figure 1 shows our evaluation environment,
which includes a number of stacked boxes. We recruited 20
participants (14 males and 6 females, aged 22-34 years old)

3In our implementation, we chose (τx, τy , τz) = (0.12, 0.14, 0.27)



who did not have prior knowledge of the details of RF-AR’s
implementation, techniques, or the environment setup. In all
of our experimental trials, the subjects were tasked to use the
headset to find fully occluded RFID tagged items that were
hidden in different locations. We evaluated multiple versions
of RF-AR with varied degrees of user interface complexity
against a baseline(XAR).
• Baseline(XAR): Similar to past work [2]. No feedback is

provided to the user until the target RFID is located

• RF-AR (SNR): Provides color cues based on RF measure-
ments as described in §V-A

• RF-AR (ConfSNR): Provides both SNR-based color cues
and the confidence-based ellipsoid hologram as described in
§V-A, and §V-B

• RF-AR (ArrowConf): Highest degree of complexity in user
interface. Optimizes users’ trajectory through visualizing ar-
rows, as described in §V-C, as well as color cues and ellipsoid
hologram
We randomized the order of baseline and RF-AR implemen-
tations when we asked each subject to use the headset.
Metrics: We evaluated RF-AR performance through four main
metrics: 1) Localization error is the error between the target
RFID tag ground truth location and the the headset’s estimated
location of the target RFID. 2) Time is the duration that the
user spent searching from when they started the experiment
until when the system found the target RFID tag confidently.
3) Success Rate is the rate that headset was able to locate the
target RFID tag within 300 seconds and with less than 25 cm
of localization L2 norm error. 4) Traveled Distance is the
distance traveled by the user from the starting point until the
RFID tagged item is confidently located.
Ground Truth: The investigators, who knew where the target
RFID tags were hidden, dragged and aligned a holographic
spheres in the Hololens App onto the target RFID tag location
and sent the location to the edge server. The holographic
spheres were removed before the headset was given to the
subjects to ensure the RFID locations are unknown to subjects.

VIII. RESULTS
We conducted 80 trials with 20 users to evaluate the impact

of RF-AR’s RF-based dynamic user interface and path opti-
mization on the efficiency and accuracy of RFID localization.

A. Time Efficiency and Localization accuracy
We first analyze localization error as a function of the time

it takes users to localize a target RFID tagged item. Fig.4a
plots the median of L2 norm localization error against the
median time that the users spent searching for the item over all
trials. The red dot demonstrates the result for Baseline(XAR),
pink dot shows RF-AR (SNR), and blue and green dots show
RF-AR (ConfSNR) and RF-AR (ArrowConf), respectively. As
shown in Fig.4a, Baseline(XAR) achieves a median local-
ization error of 9.9 cm within a median time of 118 sec.
RF-AR (SNR), RF-AR (ConfSNR) and RF-AR (ArrowConf)
achieve median localization errors of 10.0 cm, 9.4 cm and
8.6 cm, and a median time of 36 sec, 58 sec, and 76 sec,

respectively. We make the following remarks:
• All three versions of our system outperform the baseline

in the median time. This proves that at a fundamental level,
adding the“human-in-the-loop” is the key driver for perfor-
mance improvements (reducing the time needed for localizing
fully occluded RFID tagged targets) and delivers meaningful
advantage over prior art.

• For the three versions of RF-AR, as the complexity of
the user interface increased the median localization error de-
creased. These results demonstrate that increasing the UI cues
and interface sophistication successfully influence the user’s
trajectory and resulted in higher quality RF measurement and
improved localization accuracy.

• For the three versions of RF-AR, as the complexity of
the user interface increased, the median time for localiza-
tion increased. This demonstrates that while all variations
of our design outperform the baseline in time, increasing
the complexity of the user interface makes it slightly more
time consuming for the users. This could be because more
sophisticated prompts require longer reaction times from the
general AR user.

For every user interface, we also independently analyzed
the localization error, as shown in Fig.4b. The bars show the
localization L2 norm error, and the error lines demonstrate the
10th and 90th percentile. In addition, we further analyze the
time it takes users to finish the task in Fig. 4c, where bars
show the median task times and error lines again indicate the
10th and 90th percentiles for each UI. Based on these two
figures, we make the following remarks:
• Because Baseline(XAR) does not provide any feedback to

the user, the 90th percentile of convergence time is 280 sec or
approximately 4.6 minutes, which is over 2x the median time
(118 sec). This clearly shows that not delivering any prompt
to the user adversely affects the efficiency and reliability of
the system.

• While RF-AR (SNR) has the lowest median time to finish
the tasks (40 sec), its 90th percentile is 131 sec and is
higher than the 90th percentile of the more sophisticated
RF-AR (ConfSNR) and RF-AR (ArrowConf), which are 95 sec
and 121 sec respectively. This demonstrates that RF-AR (SNR)
is less reliable in improving the efficiency and accuracy of
RFID tagged items’ localization.

• More sophisticated user interfaces, RF-AR (ConfSNR) and
RF-AR (ArrowConf), achieved 90th percentile localization er-
ror of 13.3cm and 14.6cm. While our simplest user interface,
RF-AR (SNR), and the baseline have a 90th percentile lo-
calization error of 16.4cm. This demonstrates that although
RF-AR (SNR) had a better median task time than more so-
phisticate version of RF-AR, it has less reliable localization
accuracy in 90th percentile.
B. Success Rate

We define a trial to be a success when the localization
error and time to find the item are below 25 cm and 300
seconds, respectively. We expect that an error above 25 cm
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Fig. 4: Evaluation Results.(a) The plot shows the median L2-norm localization error and median task duration for X-AR (Baseline) in red, RF-AR (SNR)
in pink, RF-AR (ConfSNR) in blue, and RF-AR (ArrowConf) in green. (b) The bar graph displays the median L2-norm localization error (c) The bar graph
shows the median time that users took to complete the task (d) The bar graph shows the median distance that users traveled to complete the task. All error
bars represent the 10th and 90th percentiles of the respective metrics.

would be insufficient granularity to distinguish between boxes
on shelves. We also note that for trials lasting over 300 sec (5
min) users became discouraged to search. Table I reports the
success rate for each UI over all trials. We note the following:
• Baseline(XAR) failed in 10% of the trials. All failures

were due to users not finding the RFID tagged target item in
time. This shows that the lack of user guidance can result in
long search times that reduce the efficiency and user appeal
of the system.

• RF-AR (SNR) also fails 10% of the trials. These failures
were due to an instance of large localization error and an in-
stance of long search time. This demonstrates that minimizing
the cues to the user results in a higher likelihood of failure.

Methods Baseline RF-AR RF-AR RF-AR
(XAR) (SNR) (ConfSNR) (ArrowConf)

Success Rate 90% 90% 100% 100%
TABLE I: User Interface imapact on Success Rate

C. Traveled Distance

We also evaluated the total distance the user has to travel
(walk) from their starting position until they locate the hidden
RFID tagged item. Fig.4d shows the users’ traveled distance
for each type of user interface. The bars show the median
travel distance and the error lines demonstrate the 10th and
90th percentile. We make the following remarks:
• Baseline(XAR) needed a median of 32.22 m traveled

distance to locate the RFID tagged item. This is significantly
longer than other user interfaces. This proves that providing
the user with real-time feedback based on the quality of
RFID measurements greatly reduces the amount of walking
or searching needed from the user.

• RF-AR (ArrowConf) required a median of 14.61 m trav-
eled distance while RF-AR (SNR) and RF-AR (ConfSNR)
needed 11.12 m and 12.40 m, respectively. The addition of the
guiding arrow for DOP optimization in RF-AR (ArrowConf)
results in a slight increase in the traveled distance. We believe
that this is due to the arrow guiding the user to new locations
to improve the confidence of the system and reduce the DoP
to get lower the localization error.

IX. CONCLUSION

There have been a huge investments in AR/VR devices
that show the potential to transform the way humans and

technology interact. In this paper, we present a system that
seamlessly integrates RF sensing with AR to enable users to
find fully occluded RFID tagged items. We introduce a novel
“human-in-the-loop” design that considers path optimization
and presents a dynamic RF-based user interface. Our results
show the potential of our human-centered design to improve
the accuracy and efficiency of RFID localization for fast item
retrieval, an application with important implications in sectors
such as manufacturing, retail, and warehousing. In future
implementations of RF-AR, the entire RF sensing hardware
can be integrated into the AR headset.4 As the research
evolves, we envision future designs to explore new ways to
synergistically combine wireless sensing and AR, and we hope
that our work inspires further research in this space.
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